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4. Rationale:  
There are approximately 6.5 million adults in the United States suffering from Heart failure (HF) 
[1]. HF contributes up to 12.5% of all cause deaths and its annual cost to healthcare system was 
estimated as $30.7 billion in 2012 [2]. Early diagnosis and treatment can significantly improve 
HF prognosis [3], and subsequently help reducing the health and economic burdens of HF.  
We previously applied a novel probabilistic symbol pattern recognition approach [4] to identify 
HF patients using R-R intervals from electrocardiogram (ECG). [5]. Also, in several cohort 
studies including ARIC, we have shown that there are various ECG markers that are associated 
with incident HF [6-15]. These findings suggest that applying machine/deep learning approaches 
on features obtained from ECG can be used in developing automated HF prediction tools for 
early recognition of patients at risk.   
The aim of this proposed study is to develop artificial intelligence (AI) based models to predict 
the risk for HF by utilizing ARIC raw digital ECG data.  The ARIC study with its high-quality 
digital ECG data and corresponding HF outcomes represents a unique opportunity to answer and 
address this aim. 
5. Main Hypothesis/Study Questions: This study aims to: 

• To develop AI-based models to predict the risk for HF. 

• Compare the prediction performance of our AI-based model to the previously developed 
ARIC HF Risk Score [16]. 

• To examine the consistency of these predictive models in sex and race subgroups. 

6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present). 
Sample Size  
Inclusion criteria: All ARIC participants with good quality ECG data at baseline as well as 
information on all relevant risk factors and HF events during study’s long-term follow-up will be 
eligible for inclusion in this analysis. 
Exclusion criteria: Participants with race/ethnicity other than black and white, with prevalent HF 
at baseline visit, missing information on HF during follow-up or with missing/poor-quality 
ECGs. 

Variables:  
Outcomes: Heart failure events anytime during follow up. 

Other Variables 
- Raw digital ECG data available from visits 1, 2, 3, and 4 which will be obtained from 

the ECG Reading Center (Soliman). 
- Key demographic and clinical variables - age, race, gender, body mass index, education, 

smoking status, hypertension, diabetes mellitus, history of coronary heart disease, HDL 
cholesterol, LDL cholesterol, total triglycerides, total cholesterol, systolic blood 
pressure, diastolic blood pressure, fasting blood glucose, use of blood pressure lowering 
medications, aspirin use, use of lipid lowering medications and creatinine. 



Data analysis:  
Cohort Characteristics: Frequency distributions of participant characteristics will be reported. 
Outcome Variable: Outcome variable is incident HF defined as the first occurrence after 
baseline (visit 1). The outcome variable will be expressed in both binary (Approach 1) and time 
to event (Approach 2) fashion (Figure 1). Binary outcome will take the value of 1 for participants 
who experienced HF and 0 for others. The time-to-event variable will represent the time between 
the incident of HF and the preceding ECG screening time 
Input Variables: Model inputs will be collected from the visits as described in Figure 1. These 
will include raw ECG data as well as key demographics and clinical variables. Controls will be 
matched by age, gender, race, and visit time among participants who did not experience HF.  
Modeling: We will consider both traditional machine learning via feature engineering and deep 
learning directly on raw ECG data. 
Feature Engineering: We will implement signal processing methods on the raw ECG data. 
These methods will include Sample Entropy, Probabilistic Symbolic Pattern Recognition, Fast 
and Continuous Fourier Transformation, and Wavelet Transformations. The extracted features 
will be combined with other clinical data to be used in model building. In Approach 1, we will 
consider various machine learning and statistical modeling approaches including logistic 
regression, gradient boosting, random forest, and support vector machines. We will also 
implement a sensitivity analysis by substituting ECG features from earlier visits to identify how 
early we can efficiently predict HF. In Approach 2, we will use Cox-Proportional Hazards 
Regression with Time-Varying Covariates. Therefore, the changes in ECGs over time will be 
considered in both modeling approach. 
Deep Learning: This method will be used in Approach 1 only. We will build a convolutional 
neural network model by feeding the model with raw digital ECG signals to classify the binary 
HF outcome. We will design a cascaded architecture allowing non-ECG clinical variables into 
the model once the latest convolutional layer processing raw ECG data is flattened into a dense 
layer. We will add a normalization layer following this dense layer to handle features in varying 
units and size. 

 
Figure 1: Modeling Approaches with an Example of a Participant with HF Event 



Validation: We will implement a comprehensive cross-validation strategy. We will first split 
entire cohort into 80% model building and 20% hold out datasets. Using the 80% model building 
dataset, we will implement a 10-fold cross validation. We then will create an ensemble of ten 
models obtained over 10-fold cross-validation as a final model to test on holdout dataset. 
Alternatively, once the generalization is confirmed on 10-fold cross validation, we will build a 
new model using entire 80% model building using learned model parameters and test this final 
model on the hold out dataset. We will evaluate the model performance and compare different 
models using Area Under the Receiver Operating Characteristic Curve (AUC) statistics. 
Comparison with ARIC HF Risk Score: The models built in both Approach 1 and 2 will be 
compared to previously develop ARIC HF Risk score  [16] based on AUC statistics.  
Subgroup Analysis: We will implement a subgroup analysis on the final model for sex and race 
variables to identify whether the model better or worse represents a certain subgroup. 
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